

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 179 (2006) 3550–3555

<www.elsevier.com/locate/jssc>

Synthesis, characterization and crystal structure of $K_2Bi(PO_4)(MoO_4)$

Igor V. Zatovsky^{a,*}, Katherina V. Terebilenko^a, Nikolay S. Slobodyanik^a, Vyacheslav N. Baumer^b, Oleg V. Shishkin^b

a Department of Inorganic Chemistry, Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033, Ukraine b STC Institute for Single Crystals, National Academy of Science of Ukraine, Lenina Avenue 60, Kharkiv 61001, Ukraine

> Received 11 May 2006; received in revised form 29 June 2006; accepted 7 July 2006 Available online 24 July 2006

Abstract

A new potassium bismuth phosphate-molybdate $K_2Bi(PO_4)(MO_4)$ has been synthesized by the flux method and characterized by single-crystal and powder X-ray diffraction, IR spectroscopic studies. The compound crystallizes in the orthorhombic system with the space group *Ibca* and the cell parameters: $a = 19.7037(10)$, $b = 12.4752(10)$, $c = 7.0261(10)$. This phase exhibits an original layered structure, in which the $[\text{Bi}(PO_4)(\text{Mo}O_4)]_{\infty}$ layers consist of $[\text{Bi}_2\text{Mo}_2O_{18}]_{\infty}$ chains linked through single PO₄ tetrahedra. The K⁺ cations interleaved between these layers exhibit a monocapped distorted cubic coordination.

 \odot 2006 Elsevier Inc. All rights reserved.

Keywords: Phosphate-molybdate; Crystal structure; Layered structure; K₂Bi(PO₄)(MoO₄); IR spectra

1. Introduction

Complex oxides containing bismuth have many interesting and useful properties and they are known as oxygen ion superconductors, for example, $Bi_4V_2O_{11}$ [\[1–3\]](#page-5-0), threedimensional antiferromagnetic materials— $Bi₂CuO₄$ [\[4\]](#page-5-0), selective oxidation catalysts [\[5\],](#page-5-0) NLO-materials [\[6\].](#page-5-0) It is well established that ions such as Bi^{3+} and Pb^{2+} often generate distorted structures due to the electrostatic effect of the lone pair of electrons. The compounds formed by combination of such ions with tetrahedral anions (M_0O_4) , $WO₄, VO₄, PO₄$, etc.) are promising materials in the field of inorganic material technology and have possible applications as hosts for laser materials.

In this context, many works have been devoted to mixed bismuth phosphates and molybdates. The study of several pseudo-binary and pseudo-ternary systems as $Bi_2O_3-P_2O_5$, M_2^I O – Bi₂O₃ – P₂O₅, M^{II} O–Bi₂O₃–P₂O₅ has allowed to point out and characterize new oxide-phosphates, e.g., $\text{Bi}_{6.67}\text{O}_4(\text{PO}_4)_4$ [\[7\],](#page-5-0) $M_{0.5}^{\text{I}}\text{Bi}_{6.5}\text{O}_4(\text{PO}_4)_{4.4}(M^{\text{I}} = \text{Li}, \text{Na}, \text{K})$ [\[8\]](#page-5-0), $Na_3Bi_5(PO_4)_6$ [\[9\],](#page-5-0) $Ba_3Bi(PO_4)_3$ [\[6\],](#page-5-0) $M^{II}Bi_6P_4O_{20}$ ($M^{II} = Ca$, Sr, Ba, Cd, Pb) [\[8,10\]](#page-5-0), M^{II} BiPO₅ ($M^{\text{II}} =$ Mn, Co, Ni,)

Corresponding author.

E-mail address: [zvigo@yandex.ru \(I.V. Zatovsky\).](mailto:zvigo@yandex.ru)

[\[5,11,12\]](#page-5-0), M_2^{II} BiPO₆ ($M^{\text{II}} =$ Mg, Ca, Cu, Zn, Cd, Pb, and others) [\[13,14\],](#page-5-0) $Bi_2PbMnO_4(PO_4)$, [\[15\]](#page-5-0), $BiMn_6PO_{12}$ [\[16\]](#page-5-0). These compounds can be described in the terms of association of discrete $PO₄$ tetrahedra sharing vertices with MO_X polyhedra. Using this model Bi³⁺ plays a main role within the created frameworks. Nevertheless, this classical description does not allow establishing topological relationships between the structures and is not well suited to describe recently evidenced disordered materials.

This paper describes the preparation and structural approach a new bismuth phosphate-molybdate of K_2Bi $(PO₄)(MoO₄).$

2. Experimental

2.1. Synthesis

The title compound has been prepared by the flux method. All reagents were analytical grade (Merck). A mixture of K_2MoO_4 (5.61 g, 23.58 mmol), MoO_3 (3.39 g, 23.55 mmol), Bi_2O_3 (2.71 g, 5.81 mmol), KPO₃ (1.37 g, 11.61 mmol) and $K_4P_2O_7$ (1.92 g, 5.81 mmol) was heated to $1000 \degree C$ in a platinum crucible. The mixture was kept at this temperature until homogenization liquid (40 min) and then cooled to 650 °C at a rate of 50 °C h⁻¹. The product

^{0022-4596/\$ -} see front matter \odot 2006 Elsevier Inc. All rights reserved. doi:[10.1016/j.jssc.2006.07.027](dx.doi.org/10.1016/j.jssc.2006.07.027)

was collected as colorless crystals, the linear dimensions of which typically exceed 0.1 mm.

2.2. Analytical procedures

The ICP determination of the potassium, phosphorus, bismuth and molybdenum in the prepared material was performed on a ''Spectroflame Modula ICP'' (''Sectro'', Germany) instrument. Analysis showed that K/P/Mo/Bi mol ratio was 2:1:1:1. The infrared spectra were recorded with a NICOLET Nexus 470 (FTIR) spectrometer, in the spectral range $400-4000 \text{ cm}^{-1}$ (compound dispersed in KBr).

2.3. X-data collection and structure refinement

Initial determination of unit cell parameters and space group were performed by X-ray powder diffraction. The X-ray diffraction pattern was collected using a conventional powder diffractometer Siemens D500 operating in Bragg–Brentano ($\theta/2\theta$) geometry using (Niß-filtered Cu K α radiation). The sample of $K_2Bi(PO_4)(MoO_4)$ was gently ground in agate mortar and the data were collected at room temperature over the angular range $5-85^{\circ}$ 2 θ with a step of 0.01° and a count time of 10 s/step. The pattern was indexed using the program DICVOL04 [\[17\]](#page-5-0) from the angular positions of 20 reflections. The compound crystallizes in the orthorhombic system with the space group Ibca (no. 73) and the cell parameters: $a = 19.7037(10)$ Å, $b = 12.4752(10)$ Å, $c = 7.0261(10)$ Å (figures of merit: $M_{20} = 19.7$ [\[18\]](#page-5-0) and $F_{20} = 29.7$ (0.0068, 99) [\[19\]](#page-5-0)). Fig. 1 shows the observed, calculated and difference X-ray

Fig. 1. Powder X-ray diffraction pattern and Rietveld analysis for $K_2Bi(PO_4)(MoO_4)$. Circle signs correspond to observed data; the solid line is the calculated profile. Tick marks represent the positions of allowed reflections, and a difference curve on the same scale is plotted at the bottom of the pattern.

profiles of powder diffraction for this phosphate-molybdate.

A single crystal of $0.1 \times 0.1 \times 0.1$ mm dimensions was used for indexing and intensity data collection on an Oxford-Diffraction ''XCalibur 3'' diffractometer with 2048 × 2048 K (4MPixel) CCD detector monochromatized MoKa radiation ($\lambda = 0.7107 \text{ Å}$). Data were collected using an φ and ω scan method. A total of 14027 reflections were collected with a maximum θ of 28°, of which of 1044 reflections were independent. An experiment was performed at 293 K. Crystallographic data and structure refinement parameters for $K_2Bi(PO_4)(MoO_4)$ are reported in Table 1.

The structure was solved using a heavy atom method and refined by full-matrix least-squares in the anisotropic approximation using the SHELXS-97 [\[20\]](#page-5-0) and

Table 1 Crystallographic data and structure refinement parameters for K_2Bi $(PO.)(MoO₂)$

SHELXL-97 [\[21\]](#page-5-0) program packages. The final values were $R_1 = 0.035$ and w $R = 0.0773$ for all independent reflections (62 refined parameters). The residual electron density max/ min is $-0.328/2.737 \frac{e}{\text{A}}^{-3}$. The coordinates of the atoms are listed in Table 2. The bond lengths and bond angles in the coordination polyhedra for $K_2Bi(PO_4)(MoO_4)$ are listed in Table 3.

Further details of the crystal structure of $K_2Bi(PO_4)$ (MoO4) investigation are available from the Fachionformationszentrum Karlsruhe, D-76344 Eggeinstein–Leopoldshafen (Germany), on quoting depository number CSD-416427.

3. Results and discussion

The crystallographic study reveals that the title compound possesses a two-dimensional framework structure of vertex-sharing BiO_8 dodecahedra, PO_4 and MoO_4 tetrahedra. This phase can be formulated as a complex potassium bismuth (III) phosphate-molybdate $K_2Bi(PO_4)$ $(MoO₄)$.

The bismuth atom is surrounded by eight oxygen atoms and exhibits distorted dodecahedral coordination, with two shorter Bi–O distances $2.349(6)$ Å, two pairs of longer

Table 2 The atomic coordinates and their equivalent isotropic thermal parameters for $K_2Bi(PO_4)(MoO_4)$

Atom	Site	х		z	$U_{\text{eq}}(\AA^2)$
Bi1	8d	1/4	0.58076(2)		0.01127(18)
K1	16f	0.09441(9)	0.83076(14)	0.2163(3)	0.0303(4)
Mo1	8c	0.08133(4)	1/2	1/4	0.0185(2)
P ₁	8d	1/4	0.82328(18)		0.0105(5)
O ₁	16f	0.2385(3)	0.9005(4)	0.1689(8)	0.0193(10)
O ₂	16f	0.3118(3)	0.7499(4)	0.0277(7)	0.0177(10)
O ₃	16f	0.1319(3)	0.5332(4)	0.0468(9)	0.0268(11)
O4	16f	0.0310(3)	0.3901(5)	0.1907(10)	0.0397(15)

Table 3 The bond lengths (\AA) and bond angles (\degree) in the coordination polyhedra for K₂Bi(PO₄)(MoO₄)

Symmetry transformations used to generate equivalent atoms: i: x, 1.5-y, -0.5+z; ii: 0.5-x, 1.5-y, 0.5-z; iii: 0.5-x, -0.5+y, z; iv: x, -0.5+y, -z; v: 0.5-x, y, -z; vi: $0.5-x$, $-0.5+y$, $1+z$; vii: x, $1-y$, $0.5-z$; viii: x, $0.5+y$, $-z$; ix: x, $1.5-y$, $0.5+z$; x: $-x$, $0.5+y$, $0.5-z$; xi: $1+x$, $1.5-y$, $0.5+z$; xii: $1-x$, $0.5 + y$, $0.5-z$.

distances $2.424(6)$ and $2.444(5)$ Å, two the longest 2.553(5) \AA (Fig. 2(a)). The PO₄ and MoO₄ tetrahedra are essentially regular and have C_{2v} symmetry. The interatomic distances and angles are actually typical, with characteristic P–O and Mo–O separations: two distances P –O = 1.536(6) and $1.545(6)$ Å, O–P–O angles are spread in the range 102.8(3)–113.0(3)°; two distances Mo–O = 1.790(6) Å and two distances $Mo-O = 1.743(6) \text{ Å}$; O–Mo–O angles are spread in the range $107.9(3)$ –112.4(3)°. The coordination polyhedron of the K^+ cation is monocapped distorted cube formed by eight O atoms assuming a cut-off distance of 3.25 Å (Fig. 2(b)). This polyhedron is very irregular; in fact, the K–O distances range from 2.661(7) to 3.216(6) \AA ([Table 3](#page-2-0)).

 BiO_8 edge-sharing polyhedra form an infinite parallel zig-zag chain extending in the c direction, with a $Bi \cdots Bi$ distance of 4.05\AA . The connection between neighboring BiO₈ dodecahedra of the chain is achieved by intermediate MoO₄ tetrahedra: Bi–O–Mo bond angle is $134.4(3)^\circ$. The similar principle for connection of BiO_8 dodecahedra and $Mo(2)O₄ tetrahedra was observed for RbBi(MoO₄)₂ [23].$ $Mo(2)O₄ tetrahedra was observed for RbBi(MoO₄)₂ [23].$

Each PO_4 tetrahedra binds the four Bio_8 polyhedra and each bismuth polyhedra in its turn contacts with four phosphate tetrahedra. This tetrahedron forms common edges with two bismuth polyhedra and provide monodentate type of coordination to other two bismuth atoms forming two four-membered planar rings $BiO₂PO₂Bi$. The values of angles for $Bi-O(1)-P$, $Bi-O(2)-P$ and $Bi-P-Bi$ are 100.3(3), 96.3(3) and 180.0(1) $^{\circ}$, respectively. Geometry of the BiO_8/PO_4 structural fragment is remarkably similar to that of the bismuth phosphates, for example, orthophosphate $BiPO_4$ [\[22\]](#page-5-0). The value of the Bi–O–P angle in the case of the phosphate exhibiting monodentate type of coordination is $143.9(3)^\circ$.

The structure consists of anionic $[\text{Bi}(PO_4)(\text{MoO}_4)]^2$ layers parallel to direction c interconnected by K^+ cation. The distance between two successive layers is a half of cell dimension a (9.852 Å). In the anionic $[\text{Bi}(PO_4)(\text{MoO}_4)]^2$

layers two different structural units can be distinguished: single PO_4 tetrahedron and unit $Bi_2Mo_2O_{18}$. Unit Bi_2 $Mo₂O₁₈$ is build up with two corner-sharing dodecahedra BiO_8 and MoO_4 tetrahedra ([Fig. 3\(a\)\)](#page-4-0). In this representation it is observed the formation of $[\text{Bi}_2 \text{Mo}_2 \text{O}_{18}]_{\infty}$ chains running along c. The anionic layers are building up from $[Bi_2Mo_2O_{18}]_{\infty}$ chains linked through single PO₄ tetrahedra in the bc-plane ([Fig. 3b](#page-4-0)). The bismuth and phosphorus atoms are in the 8d special positions in this plane; the molybdenum atoms occupy positions 8c. The potassium cations occupy positions 16f and exist in tubes running along the c direction ([Fig. 4](#page-4-0)). The nearest contacts between potassium atoms are $4.05(3)$ and $4.23(2)$ Å.

 $K_2Bi(PO_4)(MoO_4)$ is isostructural to the orthorhombic modification $Na_2Y(PO_4)(MoO_4)$ [\[24,25\].](#page-5-0) Both compounds are similar when it comes to bond distances and distortion of the $M^{III}O₈$ dodecahedra: Y–O distances ranging from 2.259 to 2.428 Å [\[25\]](#page-5-0) and Bi–O bonds distances of 2.349–2.553 Å ([Table 3](#page-2-0)). In contrast to the latter those compounds exhibit different coordination environment of alkaline metals. The sodium atom is surrounded by six oxygen atoms (Na–O distances ranging from 2.283 to 2.553 Å) and the potassium atom is eight-coordinated ([Table 3](#page-2-0)). Very similar alternating anionic layers and arrangement of calcium cation for natural compound $Ca_2Y(AsO_4)(WO_4)_2$ is observed [\[26\]](#page-5-0). At the same time the structure of two-dimensional anionic frameworks $([Y(AsO₄)(WO₄)₂]⁴⁻$ and $[Bi(PO₄)(MoO₄)]²⁻)$ are different.

The IR spectrum of the title compound is shown in [Fig. 5](#page-4-0). The characteristic bands confirm the simultaneous presence of the phosphate and molybdate groups. The local symmetry of PO_4^{3-} and MoO_4^{2-} tetrahedra are C_{2v} and exhibit all the bands predicted by group theory. The space group of this compound is Ibca (no. 73). By assuming separation of the vibration into internal and external modes, factor group analysis led to the following internal modes of the PO₄ and MoO₄ anions. Thus, we expect v_1-F

Fig. 2. The oxygen atom coordination around (a) the bismuth and (b) the potassium atoms (symmetry codes: (i) x, 1.5-y, -0.5+z; (ii) 0.5-x, 1.5-y, 0.5-z; (iii) 0.5-x, -0.5+y, z; (iv) x, -0.5+y, -z; (v) 0.5-x, y, -z; (vii) x, 1-y, 0.5-z; (viii) x, 0.5+y, -z; (ix) x, 1.5-y, 0.5+z; (x) -x, 0.5+y, 0.5-z).

Fig. 3. (a) The unit $Bi_2Mo_2O_{18}$ and (b) the $[Bi_2Mo_2O_{18}]_{\infty}$ chains linked through single PO₄ tetrahedra.

Fig. 4. Projection of the structure of $K_2Bi(PO_4)(MoO_4)$ along c.

and v_3 –3F for the IR active stretching vibrations, and v_2 –2F and v_4 –3F for the bending vibrations.

The single intensive band at 1055 cm^{-1} , may be ascribed to the asymmetric stretching vibration $v_3(F_2)$ in PO₄⁻ tetrahedron. The remaining band at 945 cm^{-1} can be most likely assigned to the symmetric $v_1(A_1)$ PO₄ assuming the asymmetric $v_3(F_2)$ MoO₄ tetrahedra. The bands in the range $900-740 \text{ cm}^{-1}$ are due to the Mo–O stretching frequencies in the MoO₄ tetrahedron: $v_3(F_2)$ –815 and

Fig. 5. IR spectrum of $K_2Bi(PO_4)(MoO_4)$.

 860 cm^{-1} , $v_1(A_1)$ -weak 895 cm^{-1} . The 520–600 cm⁻¹ region shows three bonds expected for $v_4(F_2)$ of PO₄ tetrahedron bending vibrations: $590, 555$ and 522 cm^{-1} .

4. Conclusions

A potassium bismuth phosphate-molybdate $K_2Bi(PO_4)$ (MoO4) with an original layered structure has been synthesized and characterized by powder X-ray diffraction, single-crystal X-ray diffraction and IR spectroscopic studies. Although the number of phosphate-molybdates that have been synthesized up to now is very small, this study suggests that there should exist family of mixedanionic compounds with general formula $M_2\text{Ln}(\text{PO}_4)$ $(MoO₄)$ $(M = Na, K; Ln = rare earth element).$

References

- [1] N.M. Sammes, G.A. Tompsett, H. Nafe, F. Aldinger, J. Eur. Ceram. Soc. 19 (1999) 1801–1826.
- [2] J.C. Boivin, C. Pirovano, G. Nowogrocki, G. Mairesse, Solid State Ionics 113–115 (1998) 639–651.
- [3] F. Abraham, J.C. Boivin, G. Mairesse, G. Nowogrocki, Solid State Ionics 40/41 (1990) 908–914.
- [4] J.C. Boivin, J. Trehoux, D. Thomas, Bull. Soc. Fr. Mineral Crystallogr. 99 (1976) 193–195.
- [5] X. Xun, S. Uma, A.W. Sleight, J. Alloys Compds. 338 (2002) 51–53.
- [6] E. Hassan Arbib, B. Elouadi, J.P. Chminade, J. Darriet, Mater. Res. Bull. 35 (2000) 761–773.
- [7] S. Giraund, M. Drache, P. Conflant, J.P. Wignacourt, H. Steinfink, J. Solid State Chem. 154 (2000) 435–443.
- [8] M. Ketatni, O. Mentre, F. Abraham, B. Mernari, J. Solid State Chem. 139 (1998) 274–280.
- [9] E. Hassan Arbib, J.P. Chminade, J. Darriet, B. Elouadi, Solid State Sci. 2 (2000) 243–247.
- [10] D.G. Porob, T.N. Guru Row, Acta Crystallogr. B 59 (2003) 606–610.
- [11] F. Abraham, M. Ketatni, Eur. J. Solid State Inorg. Chem. 32 (1995) 429–438.
- [12] S. Nadir, J.S. Swinnea, H. Steinfink, J. Solid State Chem. 148 (1999) 295–301.
- [13] F. Abraham, M. Ketatni, G. Mairesse, B. Mernari, Eur. J. Solid State Inorg. Chem. 31 (1994) 313–321.
- [14] M. Ketatni, B. Mernari, F. Abraham, O. Mentre, J. Solid State Chem. 153 (2000) 48–54.
- [15] O. Cousin, M. Huvé, P. Roussel, O. Perez, H. Steinfink, J. Solid State Chem. 165 (2002) 324–333.
- [16] O. Cousin, O. Mentre, M. Huvé, F. Abraham, J. Solid State Chem. 157 (2001) 123–133.
- [17] A. Boultif, D. Louer, J. Appl. Crystallogr. 37 (2004) 724–731.
- [18] P.M. Wolff, J. Appl. Crystallogr. 1 (1968) 108–113.
- [19] G.S. Smith, R.L. Snyder, J. Appl. Crystallogr. 12 (1979) 60–65.
- [20] G.M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1997.
- [21] G.M. Sheldrick, SHELXL-97: Program for crystal structure refinement, University of Göttingen, Germany, 1997.
- [22] B. Romero, S. Bruque, M.A.G. Aranda, J.E. Iglesias, Inorg. Chem. 33 (1994) 1869–1874.
- [23] R.F. Klevtsova, L.P. Solov'eva, V.A. Vinokurov, Kristallografiya 20 (1975) 270–275 (in Russian).
- [24] M. Ben Amara, B. Dabbabi, Acta Crystallogr. C43 (1987) 616–618.
- [25] R.D.E. Marsh, Acta Crystallogr. C43 (1987) 2470.
- [26] F. Demartin, C.M. Gramaccioli, T. Pilati, Acta Crystallogr. C48 (1992) 1357–1359.